Math 102

Krishanu Sankar

October 30, 2018

Announcements

- Midterm - we're still working on it!
- Technical hitch, hopefully it is resolved quickly expect midterms later this week.
- The marks and feedback will come back to you electronically.

Last Time

$$
\begin{gathered}
\frac{d}{d x}\left(e^{x}\right)=e^{x} \\
\frac{d}{d x}\left(a^{x}\right)=a^{x} \cdot \ln (a)
\end{gathered}
$$

Goals Today

- What is an inverse function?
- Logarithms
- As the inverse of an exponential function
- Applications
- More examples of exponential growth and decay
- Population growth
- Radioactive decay
- etc.

Inverse Functions - definition

$f(x)$	$f^{-1}(x)$
$x+3$	$x-3$
$5 x$	$\frac{x}{5}$
x^{3}	$x^{1 / 3}=\sqrt[3]{x}$
$x^{3}+3$	$(x-3)^{1 / 3}$
e^{x}	$\ln (x)$

The inverse of a function is another function which 'undoes' the first function.

$$
f^{-1}(f(x))=x
$$

To find the inverse: write down $y=f(x)$ and try to solve for x. If $y=f(x)$, then $f^{-1}(y)=x$.

Inverse Functions - graphically

$$
y=f(x) \Longrightarrow x=f^{-1}(y)
$$

Therefore, the graphs of $y=f(x)$ and $y=f^{-1}(x)$ are reflections of one another across the line $y=x$.

Question: Does the function $y=x^{2}$ have an inverse?

Question: Does the function $y=x^{2}$ have an inverse?

Answer: It does not! In order for a function $f(x)$ to have an inverse, the reflection of its graph must pass the vertical line test. Therefore, $y=f(x)$ must pass the horizontal line test.

e^{x} has domain $(-\infty, \infty)$ and range $(0, \infty)$. $\ln (x)$ has domain $(0, \infty)$ and range $(-\infty, \infty)$.

Rules of exponentials and logarithms

$$
\begin{array}{c|c}
e^{x} & \ln (x) \\
\hline e^{a} \cdot e^{b}=e^{a+b} & \ln (A \cdot B)=\ln (A)+\ln (B) \\
\left(e^{a}\right)^{b}=e^{a b} & \ln \left(A^{b}\right)=b \ln (A)
\end{array}
$$

You can deduce the rules for $\ln (x)$ using the rules for e^{x} if you let $A=e^{a}$ and $B=e^{b}$.

Question: A bacterial colony grows at a rate proportional to the size (exponential growth).

- At time $t=0$, there are 100 million cells.
- After 3 hours $(t=3)$, there are 500 million cells.
How many cells are there at $t=7$?

Question: Let $B(t)$ be an exponential function.

- $B(0)=100$.
- $B(3)=500$.

What is $B(7)$?

Question: Let $B(t)$ be an exponential function.

- $B(0)=100$.
- $B(3)=500$.

What is $B(7)$?
Solution 1: Let $B(t)=C a^{t}$.

$$
\begin{gathered}
B(0)=100 \Longrightarrow C=100 \\
B(3)=500 \Longrightarrow C a^{3}=500 \Longrightarrow a=5^{1 / 3}
\end{gathered}
$$

Therefore, $B(t)=100 \cdot 5^{t / 3}$. So $B(7)=100 \cdot 5^{7 / 3}$.

Question: Let $B(t)$ be an exponential function.

- $B(0)=100$.
- $B(3)=500$.

What is $B(7)$?
Solution 2: Let $B(t)=C e^{k t}$.

$$
\begin{gathered}
B(0)=100 \Longrightarrow C=100 \\
B(3)=500 \Longrightarrow C e^{3 k}=500 \Longrightarrow k=\frac{\ln (5)}{3}
\end{gathered}
$$

Therefore, $B(t)=100 \cdot e^{\frac{t \ln (5)}{3}}$. So

$$
B(7)=100 \cdot e^{\frac{7 \ln (5)}{3}} \text {. }
$$

Question: Consider the same bacterial colony

$$
B(t)=100 \cdot 5^{t / 3}=100 \cdot e^{\frac{t \ln (5)}{3}}
$$

For what value of t is $B(t)=200$?

Logarithms in other bases

$\log _{a}(b)$: 'to what number must I raise a to get b?' For example,

$$
\begin{gathered}
\log _{2}(8)=3 \quad \log _{3}(9)=2 \quad \log _{5}(5)=1 \\
\log _{8}(2)=\frac{1}{3} \quad \log _{3}(1 / 9)=-2 \quad \log _{4}(1)=0 \\
\ln (b)=\ln \left(a^{\log _{a}(b)}\right)=\ln (a) \cdot \log _{a}(b) \\
\Longrightarrow \log _{a}(b)=\frac{\ln (b)}{\ln (a)}
\end{gathered}
$$

Question: Consider the same bacterial colony

$$
B(t)=100 \cdot 5^{t / 3}=100 \cdot e^{\frac{t \ln (5)}{3}}
$$

For what value of t is $B(t)=200$?
Solution 1: Let t be such that $B(t)=200$. Then

$$
\begin{gathered}
100 \cdot e^{\frac{t \ln (5)}{3}}=200 \\
e^{\frac{t \ln (5)}{3}}=2 \\
\frac{t \ln (5)}{3}=\ln (2) \\
t=\frac{3 \ln (2)}{\ln (5)}
\end{gathered}
$$

Question: Consider the same bacterial colony

$$
B(t)=100 \cdot 5^{t / 3}=100 \cdot e^{\frac{t \ln (5)}{3}}
$$

For what value of t is $B(t)=200$?
Solution 1: Let t be such that $B(t)=200$. Then

$$
\begin{gathered}
100 \cdot 5^{t / 3}=200 \\
5^{t / 3}=2 \\
t / 3=\log _{5}(2) \\
t=3 \log _{5}(2)
\end{gathered}
$$

Question: A radioactive element decays at a rate proportional to the quantity present, denoted $R(t)$. Suppose that $R(1)=5$ and $R(2)=3$. Calculate the half-life, i.e. the amount of time required for the element to decrease by half.

Question: A radioactive element decays at a rate proportional to the quantity present, denoted $R(t)$. Suppose that $R(1)=5$ and $R(2)=3$. Calculate the half-life, i.e. the amount of time required for the element to decrease by half.

Answer: $\log _{3 / 5}(1 / 2)=\frac{\ln (1 / 2)}{\ln (3 / 5)}=\frac{-\ln (2)}{\ln (3)-\ln (5)}$. You can see this because if you let $R(t)=C a^{t}$, then

$$
R(1)=C a \text { and } R(2)=C a^{2} . \text { So }
$$

$$
\frac{R(2)}{R(1)}=\frac{C a^{2}}{C a}=a
$$

So $a=3 / 5$. The half-life is the number h such that

$$
(3 / 5)^{h}=1 / 2, \text { so } h=\log _{3 / 5}(1 / 2) .
$$

Question: A drug is administered by IV to a patient at a constant rate R. At the same time, the drug is metabolized in the body at a rate proportional to the concentration in the body.
Let $C(t)$ denote the quantity of drug in the patient's body at time t. As $t \rightarrow \infty$, what do you think will happen to $C(t)$?

- It will go to infinity.
- It will level off to some positive value.
- It will eventually go to zero.
- It will oscillate.

Question: A drug is administered by IV to a patient at a constant rate. At the same time, the drug is metabolized in the body at a rate proportional to the concentration in the body.
Let $C(t)$ denote the quantity of drug in the patient's body at time t. As $t \rightarrow \infty$, what do you think will happen to $C(t)$?

- It will go to infinity.
- It will level off to some positive value.
- It will eventually go to zero.
- It will oscillate.

Recap

- What is an inverse function?
- Logarithms
- As the inverse of an exponential function
- Applications
- More examples of exponential growth and decay
- Population growth
- Radioactive decay
- etc.

